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ABSTRACT

Knowledge of the beam profiles is of critical importance for interpreting data from cosmic microwave back-
ground experiments. In this paper, we present the characterization of the in-flight optical response of the WMAP
satellite. The main beam intensities have been mapped to

� −30 dB of their peak values by observing Jupiter
with the satellite in the same observing mode as for CMB observations. The beam patterns closely follow the pre-
launch expectations. The full width at half maximum is a function of frequency and ranges from 0 � � 82 at 23 GHz
to 0 � � 21 at 94 GHz; however, the beams are not Gaussian. We present: (a) the beam patterns for all ten differential
radiometers and show that the patterns are substantially independent of polarization in the CMB channels; (b) the
effective symmetrized beam patterns that result from WMAP’s compound spin observing pattern; (c) the effective
window functions for all radiometers and the formalism for propagating the window function uncertainty; and (d)
the conversion factor from point source flux to antenna temperature. A summary of the systematic uncertainties,
which currently dominate our knowledge of the beams, is also presented. The constancy of Jupiter’s temperature
within a frequency band is an essential check of the optical system. The tests enable us to report a calibration of
Jupiter to 1-3% accuracy relative to the CMB dipole.

1. INTRODUCTION

The primary goal of the WMAP satellite (Bennett et al.
2003c), now in orbit, is to make high-fidelity polarization-
sensitive maps of the full sky in five frequency bands between
20 and 100 GHz. With these maps we characterize the prop-
erties of the cosmic microwave background (CMB) anisotropy
and Galactic and extragalactic emission on angular scales rang-
ing from the effective beam size, � 0 � � 21, to the full sky (Ben-
nett et al. 2003b). WMAP comprises ten dual-polarization
differential microwave radiometers (Jarosik et al. 2003a) fed
by two back-to-back shaped offset Gregorian telescopes (Page
et al. 2003).

Knowledge of the beam profiles is of critical importance for
interpreting data from CMB experiments. In algorithms for re-
covering the CMB angular power spectrum from a map, the
output angular power spectrum is divided by the window func-
tion to reveal the intrinsic angular power spectrum of the sky.
Thus, the main beam and its transform (or transfer function) di-
rectly affect cosmological analyses. Typically, the beam must
be mapped to less than −30 dB of the peak to achieve 1% accu-
racy on the angular power spectrum.

The WMAP calibration is done entirely with the CMB
dipole, which fills the main lobes and sidelobes. Consequently,

the angular spectrum is referenced to a multipole moment of
l = 1. The beam profile, discussed here, and electronic transfer
function (Jarosik et al. 2003b) determine the ratio of the win-
dow function at high l to that at l = 1. For most other CMB
experiments, insufficient knowledge of the beams affects both
the calibration and window function as discussed, for example,
in Miller et al. (2002).

Although it is traditional, and often acceptable, to
parametrize beams with a single one or two-dimensional Gaus-
sian form, such an approximation is not useful for WMAP.
This is because at the level to which the beams must be char-
acterized, they are intrinsically non-Gaussian. The WMAP
beams can, however, be treated as azimuthally symmetric be-
cause each pixel is observed with multiple orientations of the
spacecraft. The symmetric beam approximation is made for
the first data release, avoiding many of the complications asso-
ciated with asymmetric beams (Cheng et al. 1994; Netterfield
et al. 1997; Wu et al. 2001; Souradep & Ratra 2001).

In the following we discuss how the beams are parametrized,
how the window functions are computed, and how the uncer-
tainties in the window functions are propagated through to the
CMB angular power spectrum. The sidelobe response is dis-
cussed in a companion paper (Barnes et al. 2003).
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2. DETERMINATION OF THE BEAM PROFILES.

The beam profiles are determined from observations of
Jupiter while the observatory is in its nominal CMB observa-
tion mode. Jupiter is observed during two approximately 45 day
intervals each year. The first period occurred from 2001 Octo-
ber 2 until 2001 November 24 when Jupiter was at l = 193 � � 8,
b = 12 � � 5, and a second period from 2002 February 8 to 2002
April 2 with Jupiter at l = 189 � � 6, b = 5 � � 9, close to the Galac-
tic plane and SNR IC443. The data are analyzed in the same
manner as the CMB data in terms of pre-whitening, offset sub-
traction, and calibration (Hinshaw et al. 2003). The Jupiter ob-
servations are excluded from the CMB sky maps. In turn, the
CMB sky maps are used to remove the background sky signal
underlying the Jupiter maps.

Because the distance to Jupiter changes substantially over the
observing period, all beam maps are referenced to a distance
of dJ = 5 � 2 AU and a solid angle of � re f

J = 2 � 481 � 10−8 sr.
Jupiter is effectively a point source with temperature TJ =���

T m
J d ����� re f

J = T m
J � B ��� re f

J , where T m
J is the amplitude ob-

served by WMAP and � B is the measured main beam solid
angle. A map of Jupiter is expressed as

T (n) = TJ � re f
J B(n) (1)

where n is a unit direction vector and B is the main beam pattern
described below. The maximum of T (n) corresponds to T m

J .
The intrinsic short term variability in Jupiter’s flux is expected
to be less than 0 � 02 Jy at 20 GHz assuming that the fluctuations
scale with the nonthermal radio emission (Bolton et al. 2002).
The measured flux is � 60 Jy in K band (23 GHz) leading to
an expected variation of 	 0 � 1%. Our measurements limit any
variability to less than 2%.

Figure 1 shows the “raw” beams from both telescopes. A
number of features are immediately evident. As expected, all
beams are asymmetric and the V and W band beams have sig-
nificant substructure at the −10 to −20 dB level. The asymmetry
results because the feeds (Barnes et al. 2002) are far from the
primary focus. The substructure arises because the primary mir-
ror distorts upon cooling with an rms deviation of 
 z = 0 � 024 cm
and correlation length of lc � 10 cm (Page et al. 2003).

The Jupiter data are analyzed both as maps binned with
2 � 4 ��� 2 � 4 � pixels and as a time ordered data (TOD). These data
products are analyzed separately. In addition, full flight simu-
lations are used to test the software.

Figure 2 shows the beams in profile after symmetrization.
In the Jupiter map analysis, the symmetrization procedure con-
sists of smoothly interpolating the beam to 0 � 015 ��� 0 � 015 � pix-
els with a 2-D spline and then azimuthally averaging in rings
of width 1 � 2 � . Due to noise, the maximum value in a map
is often not on the best symmetry axis, though it is generally
within one pixel of it. The symmetrized beam has the same
solid angle as the raw beam to within 0 � 3%. The normalized
symmetrized beam is called bS. 10 In the TOD analysis, the
data are fit to a series of Hermite functions (§3) according to
their angular separation from a predetermined centroid. The
best centroid is determined iteratively. The analysis includes
the effects of the sampling integration and pre-whitening pro-
cedure (Hinshaw et al. 2003) but does not have the intermediate
step of mapmaking and thus is independent of the 2 � 4 � pixeliza-
tion. There are low signal to noise modes in the Jupiter maps

that do not affect the window functions and to which the Her-
mite method is insensitive. Generally, the Hermite beams are
used for  -space quantities, such as the window function, and
the Jupiter maps are used for real space calculations.

2.1. Beam solid angles and uncertainties

Linking the calibration of observations of the CMB at l = 1
to compact sources at l � 1000 requires knowledge of the
beam profile over a large range of angular scales. The width
in l-space can be characterized by the total beam solid angle,� A =

�
bT d � , where bT is the full sky beam profile normalized

to unity on the boresight. In our analysis, the beam is divided
into two parts: � A = � B + � S where � B is the main beam solid
angle and � S is the portion associated with the sidelobes. Ide-
ally, � S = 0 but this is not an appropriate approximation for
WMAP, especially in K band. Generally, � B is found by nor-
malizing a map to the best fit peak value, and then integrating
out to some radius. For WMAP, � B does not reach a stable
value as the integration radius is increased because of the im-
perfect knowledge of the background. This may be seen with
the following estimate. The net statistical uncertainty in the
WMAP data in a patch of radius 3deg is � 6 � K (the noise
is � 0 � 85 mK in each 2 � 4 ��� 2 � 4 � pixel). If the background
could be removed to this level, the resulting solid angle temper-
ature product would be T � = 5 � 10−2 � K sr. By comparison,
T m

J � B � 4 � K sr in W-band (T m
J � 200 mK and � B � 2 � 10−5 sr

). Given that both the region near Jupiter and the region being
compared to must be known to this level and that T � grows
with radius, deviations of a few percent are not unexpected. As
the signal to noise improves throughout the mission, this limi-
tation will be alleviated.

In order to derive a consistent set of solid angles, we define a
cutoff radius, � Rc, out to which the solid angle integration is per-
formed. As shown in Page et al. (2003), the global properties
of the beam may be modeled by a core plus a “Ruze pattern”
(Ruze 1966) that is a function of the surface correlation length
and rms roughness. We assume that lc is unchanged from the
pre-launch measurements at 70 K. (The in-flight temperatures
of the primaries are 73 K and 68 K for the central and top ther-
mometers for both A and B sides.) Table 1 shows how the main
beam forward gain, 4 ����� B, is reduced by the sampling and sur-
face deformations. The agreement between the measurements
and the expectations is evidence that the main beam effects have
been accounted for and that the in-flight 
 z is consistent with the
ground-based measurement. Physical models of the optics, in
§2.5, give further evidence for this.

We define � Rc as the radius that contains at least 99.8% of
the modeled main beam solid angle. These values are 2 � � 8, 2 � � 5,
2 � � 2, 1 � � 8, 1 � � 5 respectively for K through W bands and agree
with values derived from the physical model of the optics. Fig-
ure 2 shows examples of the K- and W-band beams and their
Ruze patterns. The solid angles resulting from the integrals
over the Jupiter maps with a cutoff radius of � Rc are given in
Table 2.

The uncertainty in the main beam solid angle primarily af-
fects the determination of the flux from point sources and spa-
tially localized features in real space. Solid angle uncertainties
affect the angular spectrum through the width of the  -space
passband as discussed in §3. The uncertainty is assessed three
ways:

10 Throughout this paper, small letters (e.g., b � b � ) are used to denote dimensionless quantities normalized at � = 0 or � = 0, and capital letters (e.g., B � B � ) are used to
denote quantities normalized with � B. For example, b = B( � ) � B( � = 0). The main beam solid angle of the antenna is � bd � = � B, similarly � Bd � = 1. The term
“transfer function” refers to the Hermite or Legendre transform of a beam. The term “window function” is reserved for the square of the transfer function.
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FIG. 1.— Jupiter maps of the A and B side focal planes (Bennett et al. 2003c) in the reference frame of the observatory. The contour levels are at 0.9, 0.6, 0.3,
0.09, 0.06, 0.03 of the peak value. W1 and W4 are the “upper” W-band radiometers. In W band, the lobes at the 0.09 contour level ( � −10 dB) and lower are due to
surface deformations.
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FIG. 2.— Left: The symmetrized beams (normalized at unity) and noise levels (below) from two seasons of Jupiter observations. Both polarizations have been
combined. The noise rises at small radii because there are fewer pixels over which to average. With four years of observations, the noise level will be reduced by a
factor of two. Right: The K (black) and W3 (grey) symmetrized beam profiles with their associated Ruze patterns (§2.1). The noise level is at 20 dBi in all bands as
seen in the plot (missing data corresponds to negative values). The maximum optical gains are 47.1 and 59.3 dBi in K and W bands as indicated by the horizontal
lines. Table 1 shows the gain budget. The dashed lines are the Ruze patterns assuming a Gaussian shaped distortion with the parameters in the text. The lighter
shaded dotted lines that meet the dashed lines at � = 0 are for a tophat shaped distortion. In W band, the tophat prediction, which has a prominent lobe at � = 2 �

�
5

clearly does not fit the data. Plots for W14 show the Ruze pattern to be above the beam profile for ��� 1
�

suggesting the magnitude of the deformations is not
greater than those we use. However, some fraction of � B could be at or near the noise level for 1 �

�
5 � ��� 2 �

�
0. The vertical straight lines indicate the cutoff radii,� Rc, for the Gaussian distortion model.

1. The solid angles are determined from simulations that
have been processed in the same way the flight data are
computed. The rms deviation between the input and re-
covered solid angle for 20 measurements (10 on the A
side and 10 on the B side) is 1.1%. The formal statisti-

cal uncertainty is between 0.7% and 1% depending on
band.

2. The scatter in derived temperature of Jupiter is found
for all detector/reflector combinations. Each feed is
mapped in two polarizations by two detectors during
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TABLE 1

MAIN BEAM FORWARD GAIN BUDGET

Gain K Ka Q V W1& W4 W2& W3
Maximum optical design gain (dBi) 47.1 49.8 51.7 55.5 58.6 59.3

e−k2 � 2
z 0.99 0.97 0.95 0.90 0.78 0.78

After scattering (dBi) 47.0 49.7 51.5 55.1 57.5 58.2
After sampling (dBi) 47.0 49.6 51.4 54.9 57.3 57.9

Measured in flight (dBi) 47.3 49.4 51.4 54.6 57.7 57.6

The forward gain budget for representative beams. The first row gives the as-designed forward gain that would be achieved with a stationary satellite
with ideal reflectors. The next line gives the gain reduction factor from the Ruze formula (Ruze (1966), k is the wave vector, � z is given in the text).
The scattering reduces the gain to the values given in the line labeled “after scattering.” The finite integration time for each data sample results in a
slight smearing of the beam, reducing it to the values in the line labeled “after sampling.” For reference, 1% corresponds to 0.043 dB.

two seasons for a total of eight measurements. The sta-
tistical uncertainty of the mean of the eight measure-
ments is 2.6% in K band and � 1 � 1% in Ka through
W bands. The K beam result has a relatively low am-
plitude, � 13 � 5 mK, and is wide, making it difficult to
measure. It is also the most susceptible to the effective
frequency and to incompletely subtracted Galactic con-
tamination.

The systematic uncertainty is also determined from the
Jupiter maps. The uncertainty on Jupiter’s measured
amplitude is � 0 � 5% and is always subdominant to the
uncertainty in the solid angle. We assume that Jupiter’s
temperature is the same for all measurements within a
band. (The intraband effective frequencies are close
enough to be insensitive to Jupiter’s spectrum.) The
uncertainty of � B is increased until � 2 ��� = 1 for fits
to Jupiter’s temperature within a band. This results in
uncertainties of 2.6%, 1.2%, 1.2%, 1.1%, & 2.1% per
DA11 per side for K through W bands.

3. The solid angles are recomputed by direct integration
after increasing � Rc to 3 � � 7, 3 � � 3, 2 � � 9, 2 � � 4, 2 � � 0 respec-
tively for K through W bands. For the 10 DAs on both
A and B sides, the rms deviation between the original� 	 � Rc and recomputed solid angles is 0.8% with no
clear trend in the sign of the deviation except in W-band.
In W-band, the solid angles with the increased � Rc are
systematically larger by 0.8% on average, suggesting a
potential bias. The most likely explanation is that the
shape of the surface distortions is not Gaussian as as-
sumed for the Ruze model. From Figure 2, one sees that
the level of the potential contribution is at � −35 dB,
just beyond � Rc. We term this region the beam pedestal.
To account for the bias, the W-band solid angles are
increased by 0.8% over the nominally computed value
and assigned an additional uncertainty of 0.4%, added
in quadrature. The net uncertainty is still 2.1%. This
increase is accounted for in Table 1 and discussed in the
context of the window functions in §3.2. For the year-
one data release, we treat this as a systematic deviation
from our model and account for it in the analysis. Fu-
ture analyses, with more data, will treat this effect with
a more comprehensive beam model (§2.5) and will de-
termine the source of the pedestal in the beam.

The uncertainties in the solid angles used throughout the
analysis encompass the systematic effects in items 2 and 3.
These uncertainties should be interpreted as “1 
 .”

2.2. Sidelobes

The distinction between the main beams and the sidelobes is
at some level an arbitrary definition. The structure that holds the
feed horns scatters radiation into a large region around the main
beams. In other words, the main beam does not contain the to-
tal solid angle of the full sky beam (Table 7, Page et al. (2003)).
The fraction of the total solid angle outside � Rc is 0.037, 0.012,
0.012, 0.0022, and 0.001-0.003 in K through W bands respec-
tively. For example, in K band, the region with � 	 � Rc con-
tains 99.8% of the modeled main beam solid angle ( � B) but
only 96.4% of the total solid angle ( � A).

The sidelobes have two effects on the interpretation of the
data. The first arises from Galactic contamination. As shown
in Barnes et al. (2003), the sidelobe leakage affects primarily
l 	 20 and is not significant for Ka, Q, V, and W bands. The
second arises from the sidelobe contribution to the calibration
of features at l � 20. For example, point sources are detected
only in the main beam and the measured temperature profile
of a point source corresponds to only a main beam calibration.
The dipole, however, is a full beam calibrator. Thus, to obtain
the true flux of a point source, to a good approximation one
multiplies the flux as calibrated by the dipole by 1.037, 1.012,
1.012, 1.002, and 1.003 in K through W bands respectively.

For the year-one release, only the K-band map is corrected
for the Galactic sidelobe contribution. However, all the point
source fluxes in Bennett et al. (2003a) and Jupiter fluxes given
below have been corrected in all bands. The uncertainty of the
correction is taken as half the correction factor, or 2%, 0.5%,
0.5%, 0.1%, and 0.2% in K through W bands respectively.

2.3. Effective Frequencies

Because of WMAP’s broad frequency bandwidth, sources
with different spectra have different effective frequencies. The
effective frequency for a source that is small compared to the
beam width (Page et al. 2003) is:

� e �

�
� f ( � )Gm( � ) � −2 
 ( � )d ��
f ( � )Gm( � ) � −2 
 ( � )d �

(2)

where f ( � ) is the measured radio frequency (RF) passband
12 and Gm( � ) is the maximum (forward) gain. The spec-

11 A differencing assembly (DA) (Jarosik et al. 2003a) comprises two polarization sensitive radiometers. There are 1, 1, 2, 2, & 4 DAs in K through W bands
repectively.
12 Jarosik et al. (2003a) uses r( � ) where this paper and Page et al. (2003) use f ( � ).
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TABLE 2

MAIN BEAM SOLID ANGLES, GAINS, & EFFECTIVE FREQUENCIES

Beam � B Gm � sync
e � f f

e � cmb
e P1 � cmb

e P2 � cmb
e � RJ

e � dust
e

(sr) (dBi) (GHz) (GHz) (GHz) (GHz) (GHz) (GHz) (GHz)
K1A 2 � 44 � 10−4 47.1 22.42 22.50 22.74 22.36 23.18 22.77 22.95
K1B 2 � 36 � 10−4 47.3 22.47 22.55 22.78 22.80 22.98
Ka1A 1 � 43 � 10−4 49.4 32.67 32.74 32.95 32.84 33.19 32.99 33.17
Ka1B 1 � 45 � 10−4 49.4 32.61 32.68 32.89 32.93 33.10
Q1A 0 � 869 � 10−4 51.6 40.54 40.64 40.90 40.96 40.79 40.88 41.18
Q1B 0 � 903 � 10−4 51.4 40.58 40.67 40.93 40.99 41.20
Q2A 0 � 911 � 10−4 51.4 40.48 40.56 40.79 40.84 40.23 40.99 41.03
Q2B 0 � 895 � 10−4 51.5 40.43 40.51 40.75 40.80 40.99
V1A 0 � 405 � 10−4 54.9 60.24 60.40 60.79 59.32 61.22 60.96 61.36
V1B 0 � 439 � 10−4 54.6 60.22 60.38 60.78 60.95 61.35
V2A 0 � 426 � 10−4 54.7 60.95 61.10 61.47 61.72 60.75 61.63 62.00
V2B 0 � 421 � 10−4 54.7 60.93 61.09 61.46 61.62 62.00
W1A 0 � 196 � 10−4 58.0 92.85 93.08 93.48 93.71 93.27 93.89 94.47
W1B 0 � 213 � 10−4 57.7 92.74 92.97 93.37 93.78 94.37
W2A 0 � 214 � 10−4 57.7 93.33 93.50 93.80 93.58 94.35 94.10 94.54
W2B 0 � 233 � 10−4 57.3 93.38 93.55 93.86 94.17 94.61
W3A 0 � 205 � 10−4 57.9 92.42 92.58 92.86 92.44 93.39 93.15 93.57
W3B 0 � 235 � 10−4 57.3 92.45 92.61 92.90 93.19 93.63
W4A 0 � 203 � 10−4 57.9 93.25 93.45 93.81 94.33 93.18 94.17 94.68
W4B 0 � 213 � 10−4 57.7 93.19 93.39 93.75 94.11 94.63

The � B are derived from the Jupiter maps and include the smearing from the 2 � 4 � pixelization. These solid angles should be used for working with
the Jupiter maps. The forward gain is Gm = 4 ����� B. The effective frequencies are for sources smaller than the beam size (except for entries P1 and
P2). For diffuse sources, one should use the tabulation in Jarosik et al. (2003a). The columns with the P1 and P2 labels are for the two polarizations
and come directly from Table 11 in Jarosik et al. (2003a). They are the same for the A and B sides. By comparing P1 and P2 with � cmb

e from the
previous column, one can assess the effects of the optical gain on the passband. The 1 � uncertainty on the effective frequency is 0 � 1 GHz though
the values are given to 0.01 GHz so the trends may be assessed.

tral dependence of the source is 
 ( � ) 	 ��
 with � the spec-
tral index ( � � −0 � 7 for synchrotron, � � −0 � 1 for free-
free, � = 2 for Rayleigh-Jeans, and � � 4 for dust) or 
 ( � ) 	
� 4 exp(h � � kBTCMB) � (exp(h � � kBTCMB) − 1)2 for the CMB. (The
variation of loss across the band is negligible.) For full beam
sources, such as the CMB or the calibrators used in ground
testing, the small dependence on the forward gain should not
be included and the central frequencies in Jarosik et al. (2003a)
should be used. At high l or for point sources, the effective cen-
ter frequency, and therefore the thermodynamic to Rayleigh-
Jeans correction, changes. The magnitude and sign of the
change depend on the relative weights of the radiometer pass-
bands and forward gain. This small effect ( 	 0 � 2 GHz or	 0 � 1%) in the conversion was not included in the year-one
maps.

The passbands for the two polarizations in a DA differ
slightly (Jarosik et al. 2003a). Thus, the two polarizations for
one telescope (e.g., A side) have different passbands. On the
other hand, the optical gain as a function of frequency is the
same for both polarizations of one telescope but differs between
the A and B sides. In Table 2, for the CMB, we give the effec-
tive frequencies from equation 2 for the average of the two RF
passbands for the A and B sides separately. We also give the ef-
fective frequencies for both polarizations separately (Table 11,
Jarosik et al. (2003a) ) for a source that fills the beam. The table
shows that the effect of the optics on the passbands is small.

2.4. Temperature of Jupiter

The observations of Jupiter and the CMB dipole with WMAP
result in a calibration of Jupiter calibrated with respect to the

CMB dipole. After coadding the data over polarization and
season, a fit is made to Jupiter’s temperature. Before the fit
is done, a correction is applied. The loss in the input optics
on the A and B sides differs by � 1% (Table 3, Jarosik et al.
(2003a)). Therefore, Jupiter and the CMB do not have the same
apparent temperature when measured through the A and B tele-
scopes. The signature of the effect is that the average of the A-
side temperature data is offset from that of the B-side data. This
effect is accounted for in the year-one sky maps but not in the
Jupiter maps. After the A/B imbalance, sidelobe corrections,
and the W-band pedestal correction, all measurements of TJ in
one microwave band are fit to a single temperature. We find that
TJ, in brightness temperature, is given by 134  4, 146 � 6  2 � 0,
154 � 7  1 � 7, 163 � 8  1 � 5, 171 � 8  1 � 7 K in K through W bands
respectively. The uncertainty is dominated by the uncertainty in
the solid angles, in the sidelobe corrections, and in the 0.5% in-
trinsic calibration uncertainty (Hinshaw et al. 2003). These val-
ues are the temperature one would measure by comparing the
flux from Jupiter to that from blank sky. To obtain the absolute
brightness temperature, one must add to these the brightness
temperature of the CMB (2.2 K, 2.0 K, 1.9 K, 1.5 K, and 1.1 K
in K through W bands, respectively). A future paper will com-
pare this result to other measurements and assess the stability
and polarization characteristics more completely.

2.5. Physical Model of Beams

The dominant surface deformation that leads to the distor-
tions of the main beams comes from the “H-shaped” backing
structure that holds the primary mirrors. A simple Fourier trans-
form of the aperture with an additive H-shaped distortion re-
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produces many of the features in Figure 1, but photogramatic
pictures (Page et al. 2003) of the cold surface indicate that the
surface structure is more complicated. For the purposes of the
year-one analysis, the Gaussian distortion model is sufficient,
but for future analyses a more accurate model is desired.

The full beam is modeled using a physical optics code
(DADRA, Rahmat-Samii et al. (1995)) that predicts the beam
profile given the detailed physical shape of the optics. The pri-
mary surface deformation is parametrized with a set of Fourier
modes the amplitudes of which are the fit coefficients. (In the
pre-launch cryogenic tests, there was no evidence for a signif-
icant change in shape of the secondary.) A minimization loop
finds the surface shape parameters that simultaneously fit the
two V-band and four W-band beam maps of Jupiter.

The program is computationally intensive because the full
physical optics calculation for all beams is recomputed for each
iteration. A comparison of the measured and modeled beam
patterns is shown in Figure 3, from which it is clear that the
amplitude and phase of much of the surface deformation has
been identified. The program has not run long enough to con-
verge in all bands, so it is not yet used in the beam analysis. At
this stage, though, the model gives us confidence that we are
not missing significant components of � B and that our interpre-
tation of the beams is correct.

2.6. Temperature Stability and Reflector Emissivity

The WMAP orbit in the L2 environment results in extremely
good thermal stability. The instrument has an array of ther-
mometers on the optical components with sub-millikelvin res-
olution (Jarosik et al. 2003b). By binning the temperature data
synchronously with the spin rate and the position of the Sun,
we detect a synchronous thermal variation in the optics. The
top and middle of the primary have a peak-to-peak amplitude
of � 0 � 23 mK. We believe this is due to scattering of solar ra-
diation off the rim of the solar array. The tips of the secondary
mirrors show a maximal variation of 0.04 mK peak-to-peak,
with the rest of the secondaries much less. There is no evidence
for any thermal variation due to illumination by the Earth or
Moon. The 0.23 mK is well below the conservative bound of
1.5 mK in Page et al. (2003) and below the 0.5 mK rms require-
ment in the systematic error budget.

We bound the emissivity, � , of the reflectors using a simi-
lar method. After subtracting the CMB dipole from the TOD,
the radiometric signal is coadded in Sun-synchronous coordi-
nates following the method outlined in Jarosik et al. (2003b).
The net spin synchronous radiometric signal detected is 0.4 � K
peak-to-peak (0.014 � K rms) in the combined W and V bands.
Therefore, an upper bound on the emissivity of the surface is
0.002. The predicted emissivity is 0 � 0005.

2.7. Polarization from Optics

Each DA measures two orthogonal differential polarizations
from each pair of feeds (e.g., K11A and K11B form one dif-
ference and K12A and K12B form the other difference). The
Stokes Q and U components are found by differencing these
two signals in the time stream, determining the components
relative to a fixed direction on the sky, and then producing a
map with the mapmaking algorithm (Kogut et al. 2003; Hin-
shaw et al. 2003). WMAP was designed to have cross-polar
leakage of 	 −22 dB in all bands (Page et al. 2003) to enable
a measurement of the polarization of the CMB. This specifica-
tion was met and demonstrated in pre-launch ground tests with

a polarized source.
To assess the degree of the similarity of the two polarization

channels, we take the A-side beam maps for both polarizations
from one feed (e.g., KA11 (’P1’) and KA12 (’P2’)), difference
them, integrate over the difference map, and then divide by T �
from Jupiter. The resulting fractional signal for the A side is
8.1%, 2.5%, 0.2%, 0.4%, -2.8%, -2.7%, 0.3%, 0.5%, 1.6%, and
0.9% in K1 through W4 bands. For the B side it is 6.5%, -0.1%,
-3.3%, 4.0%, 0.4%, 1.0%, -0.5%, -0.1%, 2.7%, -0.5%. The sta-
tistical uncertainty for the difference in polarizations is � 1 � 2%
and the measured rms of all Ka through W values is 1.8%. For a
polarized source, the sign of the difference changes when P1-P2
is determined on the A and B sides.

The difference between the beams (P1-P2) from the Jupiter
maps is larger than expected but there are no clear trends in Ka
through W bands and no clear detections of polarization. For
K band, there is a clear excess at a level larger than can be at-
tributed to the optics. As Jupiter is nearly a thermal source,
the difference is not due to a frequency mismatch (Kogut et al.
2003) between the dipole and Jupiter. However, the difference
in effective frequencies of 1.0 GHz (P1 and P2, Table 2) leads
to a difference in solid angle of order 10% (Table 5, Page et al.
(2003)), enough to explain the effect. The net effect is smaller
in the higher frequency bands because of the low edge taper.
For the year-one analysis, the slight difference in the effective
frequency for the bands is not corrected. Instead, the uncer-
tainty is absorbed in the uncertainty of the average solid angle.

The CMB is polarized at the � 5% level, in temperature
units, and the temperature-polarization correlation is at the

� 15% level. The CMB polarization signal comes from scales
larger than the size of the beam and so no particular band mis-
match affects the CMB polarization results. In addition, the
CMB signal is derived from the sum over multiple bands.

3. CALCULATION OF WINDOW FUNCTIONS

The characteristics of the CMB are most frequently ex-
pressed as an angular spectrum of the form l(l + 1)Cl � 2 � (Bond
1996) where Cl is the angular power spectrum of the tempera-
ture:

T (n) =
�
l �m almYlm(n) ��� a �l � m � alm � = 	 l � l 	 m � mCl (3)

where n is a unit vector on the sphere and Ylm is a spherical
harmonic.

The beam acts as a spatial low-pass filter on the angular vari-
ations in T (n) such that the variance of a noiseless set of tem-
perature measurements is given by

C(0) �
�

l

(2l + 1)Cl

4 � wl (4)

where wl is the window function which encodes the beam
smoothing. It is normalized to unity at l = 0 as discussed be-
low.

The window functions are expressed following the conven-
tions of White & Srednicki (1995). The window function de-
pends on the mapping function M(n � n � ) which describes how
the experiment convolves the true sky temperature T (n � ) into
the observed temperature 
T (n),


T (n) = � d � n � M(n � n � )T (n � ) � (5)

For WMAP, M(n � n � ) for one feed is a weighted average of
the beam response B(n � n � ) that accounts for the smearing due
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FIG. 3.— Left: A mosaic of the A-side W and V-band measured beams. One should focus on the main beams areas. Different noise levels in the constituent
mosaics lead to apparent artifacts away from the beam centers. Right: Model of the A-side beams based on the physical optics calculations described in the text.
The same surface is used for all beams. Most of the features in the measured beams are reproduced in the model indicating that the source of the distortions has
been identified. The horizontal stripes in the model are the result of an intentional undersampling that speeds up the code. The separation between different W-band
beams is 1 �

�
1, less than the cutoff radius for the determining the W-band solid angles.

to the finite arc scanned over an integration period and the az-
imuthal coverage of the observations in each pixel. The sym-
metrized beam, BS, is an excellent approximation to the map-
ping function.

The full window function is given by:

w � (n1 � n2) � � d � n �1 � d � n �2 M(n1 � n �1)M(n2 � n �2)P� (n �1 � n �2)

=
4 �

(2  + 1)

+ ��
m=− � � d � n �1 � d � n �2 M(n1 � n �1) �

M(n2 � n �2)Y �� m(n �1)Y� m(n �2) (6)

where P� is a Legendre polynomial. The primary quantity of in-
terest is the window function at zero lag, w � (n � n). In this case
the total variance of the data, C(0), is the sum of the power in
each spherical harmonic weighted by the window. This is di-
rectly analogous to low-pass filtering. If the mapping function
is independent of celestial position, then

w � =
4 �

(2  + 1)

+ ��
m=− �

���� � d � n M(n � n)Y �� m(n)

���� 2 (7)

=
4 �

(2  + 1)

+ ��
m=− � �

m � m
� 2 (8)

where the m � m are the harmonic coefficients of the mapping
function.

If the beam is azimuthally symmetric, a further simplification
can be made: � + �

m=− � �
m � m

� 2 = (2  + 1)b2
l � 4 � where bl is given

by the Legendre transform of the beam

bl = 2 � � bS( � )Pl(cos � )d(cos � ) ��� B � (9)

Thus wl = b2
l . For symmetric beams, � is used instead of

acos(n � n � ). For a symmetric Gaussian of width 
 b, we find

Bl � 2 � 
 2
be−l(l+1) � 2

b � 2

= � Be−l(l+1) � 2
b � 2 (10)

where Bl is the Legendre transform with units of sr. Because
the instrument is calibrated with a dipole signal, the Bl should

be normalized at l = 1. In practice, this is indistinguishable
from normalizing at l = 0. Thus, bl = Bl � Bl=0 = Bl ��� B and is
dimensionless.

Although WMAP is intrinsically differential, there is essen-
tially no overlap of the beams from opposite sides, so the win-
dow functions from each beam may be treated independently
and then combined in the end. Thus, the window function for
the differential signal is derived from the weighted symmetrized
beam

bS( � ) =
� S

2

�
(1 − xim)

�
bS � A �

� A
B

+
(1 + xim)

�
bS � B �

� B
B � (11)

where � A
B and � B

B are the main beam solid angles for the A and
B side beams, � S is the effective solid angle of the combined
beam, and xim is � 0 � 01 and corrects for the A/B imbalance
(Jarosik et al. 2003a) 13. We use the absolute values to indi-
cate that both beams are treated as positive in this equation. As
before, the superscript S denotes a symmetrized beam.

3.1. Window Functions and Their Uncertainties.

We compute the window function for the CMB analysis from
bS using an expansion of the symmetrized beam in Hermite
polynomials. Hermite functions are a natural basis for the beam
as they parametrize deviations from Gaussanity. The expansion
also naturally gives the covariance matrix for the Bl as well.

The Hermite expansion is given by

bS( � ) = exp(− � 2 � 2 
 2
h)

mh�
i=0

a2iH2i( ��� 
 h) (12)

where � is angular distance from the beam center, 
 h is the
Gaussian width of the beam, and H2i is the Hermite polyno-
mial of order 2n (Chapter 22, Abramowitz & Stegun (1972) ).
The parameters of the expansion are given in Table 3. A fit is
made of the TOD to equation 12. From the fit, the mh coef-
ficients a2i and the mh � mh covariance matrix Caa � are found.
The expansion coefficients, a2i, are normalized to account for
the measured temperature of Jupiter and the normalization of
H2i.

The transfer function is computed separately for each Her-
13 The xim is the average of the values for the two polarizations.
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TABLE 3

TRANSFER FUNCTION AND WINDOW FUNCTION PARAMETERS

K Ka Q V W14 W23

mh 10 30 30 50/70 70 70
�

h (deg) 0.348 0.268 0.210 0.139 0.089 0.088� wl =0 � 5 128 163 200 265 300 260� wl =0 � 1 240 320 400 580 840 700

Parameters used in the beam fits and their assessment. The number of terms in the Hermite expansion is given by mh and the Gaussian width for
the expansion are given by �

h. The
�

value for which the normalized window is 0.5 is
� wl =0 � 5 and similarly for

� wl =0 � 1.

mite polynomial following equation 9:

Bli = 2 � � exp(− � 2 � 2 
 2
h)H2i( � � 
 h)Pl(cos � )d(cos � ) (13)

so that the full transfer function is

Bl =
mh�
i=0

a2iBli � (14)

The window functions based on equation 14 are shown in
Figure 4. From equation 14, one can determine the unnormal-
ized beam covariance matrix of the beam:

� B
ll � = mh�

i � j=0

�
Bl�
a2i

Caa �
i j

�
Bl ��
a2 j

=
mh�

i � j=0

BliC
aa �
i j Bl � j � (15)

This matrix has units of sr2, is independent of Jupiter’s temper-
ature, and is largest in magnitude at low  .

Because of the dipole calibration, there is effectively only
calibration uncertainty at l = 1. This is accommodated in the
formalism by normalizing the beam covariance matrix at l = 0,
bl = Bl � B0, as shown in Appendix A. We find

� b
ll � = mh�

i � j=0

�
bl�
a2i

Caa �
i j

�
bl ��
a2 j

=
1

( � S)2

� � B
ll � + blbl � � B

00 − bl
� B

0l � − bl � � B
l0 � � (16)

Equation 16 gives the formal statistical uncertainty in the
transfer functions which is shown in Figure 5 for the ten DAs.

The solid angle is a scaling factor for the transfer functions,
bl , and does not directly enter into the uncertainty of the win-
dow function. However, the noise that leads to the uncertainty
in � B also produces the finite Caa � . In particular, the uncer-
tainty in the  cutoff in the transfer function is manifest as the
increased uncertainties at large  in Figure 5. Because we found
that the scatter in � B was larger than that predicted by the noise
by a factor of two in W band (§2.1 item 2), the statistical er-
ror bars from equation 16 are inflated by a factor of two in all
bands to account for current systematic uncertainties intrinsic
to the Jupiter data. This is shown in Figure 5.

3.2. Systematic Uncertainty in the Window Functions

The window functions depend on the treatment of the beams,
sky coverage, and analysis method at the few percent level.
These systematic effects are included in the window function
uncertainty.

To determine the effect of incomplete symmetrization, map-
ping functions M(n � n � ) are computed for coverage correspond-
ing to a pixel near the north ecliptic pole, which has the most
symmetric coverage, and for a pixel on the ecliptic, which has
the least symmetric coverage. For each mapping function, the

full window function (equation 8) is computed and compared
to b2

l computed from equation 14.
Figure 6 shows the departure of the full window function

from the symmetrized window function as a function of  . For
all CMB analyses, the symmetric beam assumption is accurate
to 1% for all  except for 300 	  	 400 in Q band. In this
range, the instrument noise is significantly larger than the beam
uncertainty. The uncertainty in the symmetrization is included
in the year-one analysis to the extent that it is accounted for in
the uncertainties shown in Figure 5.

In addition to the Hermite-based method, The transfer func-
tions are computed from the Jupiter maps ( using equation 9
) as well as from a direct transform of the binned TOD (us-
ing equation 8). These transforms weight the data differently,
and less naturally, than do the Hermite expansion and are thus
considered as checks. The difference between the transform
methods is shown in Figure 5. As the 1 
 error at each l, we
adopt the maximum departure from zero of the two alternative
transforms or twice the formal uncertainty derived from Caa � .
This error bound is shown as the outer envelope in Figure 5 and
is propagated through all other analyses.

In §2.1, it was shown that the choice of � Rc leads to a possi-
ble systematic bias in the determination of the total beam solid
angle in W band. The Jupiter-based window functions were
computed with the extended � Rc (§2.1, item 3) and were found
to differ from the baseline window functions by at most 0.3%
for l 	 lw=0 � 1. This demonstrates that � 1% effects in Jupiter
maps can be negligible in  -space.

4. BEAM PARAMETERS FOR COADDED DATA SETS

Most analyses are performed on maps that have been coad-
ded by polarization or frequency (Bennett et al. 2003b; Hin-
shaw et al. 2003). Table 4 gives the effective solid angles, gains
and frequencies for two map combinations. The effective solid
angle here is computed with equation 11, so it does not include
the 2 � 4 � Jupiter pixelization. These values should be used for
data analyses of the sky maps.

The conversion from flux in Janskys (10−26 Wm−2Hz−1) to
antenna temperature depends on the beam. The flux is modeled
as F� 	 ( ����� e) 
 . For a broad band receiver for which the gain
is known at all frequencies, the conversion factor is:

� bb =
(c2 � 8 � kB � 2

e )
�

f ( � )Gm( � )( ����� e) 
 −2d ��
f ( � )d �

(17)

where Gm is the maximum gain, f ( � ) is the radiometer band
pass, and kB is Boltzmann’s constant. The “bb” superscript
indicates that this is a broad band quantity computed from a
model of the optics.

For WMAP we report an effective conversion factor of
�

=
c2 � (2kB � S( � f f

e )2) for sources with � = −0 � 1. Here, � B is com-
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FIG. 4.— The ten window functions, wl , computed from the Hermite expansion. The window functions for the two polarizations in each feed are the same.

TABLE 4

MAIN BEAM SOLID ANGLES, GAINS, � , AND EFFECTIVE FREQUENCIES FOR COMBINED MAPS.

Beam � S �
FWHM Gm � � cmb

e

(sr) (deg) (dBi) ( � K/Jy) (GHz)
For 10 maps

K 2 � 39 � 10−4 0.82 47.2 268 22.8
Ka 1 � 43 � 10−4 0.62 49.4 213 33.0
Q1 0 � 879 � 10−4 0.48 51.6 224 40.9
Q2 0 � 900 � 10−4 0.48 51.4 220 40.5
V1 0 � 418 � 10−4 0.33 54.8 214 60.3
V2 0 � 416 � 10−4 0.33 54.8 210 61.2
W1 0 � 199 � 10−4 0.21 58.0 190 93.5
W2 0 � 215 � 10−4 0.20 57.7 173 94.0
W3 0 � 213 � 10−4 0.20 57.7 179 92.9
W4 0 � 202 � 10−4 0.21 57.9 185 93.8

For 5 maps
K 2 � 39 � 10−4 0.82 47.2 269 22.8
Ka 1 � 43 � 10−4 0.62 49.4 213 33.0
Q 0 � 889 � 10−4 0.49 51.5 222 40.7
V 0 � 417 � 10−4 0.33 54.8 212 60.8
W 0 � 206 � 10−4 0.21 57.8 182 93.5

The � e is taken as the average of filters in one band as given by Jarosik et al. (2003a). The top ten entries are for the ten maps in which the two
polarizations have been combined. The bottom five are for the maps combined by polarization and band. A useful characteristic beam resolution is
the full width at half the beam maximum, �

FWHM , though the beams are not Gaussian. The values for � are for a source with a free-free spectrum.
The K-band value is appropriate for the sidelobe corrected map described in Hinshaw et al. (2003). For year-one analyses using � S and � , we
recommend uncertainties of 2.6%, 1.2%, 1.2%, 1.1%, and 2.1% in K through W band respectively.

puted from the Hermite beam profiles and � f f
e is the effective

frequency for free-free emission. The fractional uncertainty is
the same as for � S. The factors are tabulated in Table 4.

5. CONCLUSIONS

We have presented the characteristics of the beams in both
real space and in  -space and assessed the uncertainties in both
domains. The uncertainties in the beam solid angles are given
by 2.6%, 1.2%, 1.2%, 1.1%, and 2.1%. The uncertainties in the
window functions are typically 3% at most values of  . These

values include systematic effects.
We have also presented the formalism in which the beam un-

certainties are propagated throughout the analysis. The uncer-
tainties which we adopt are conservative though prudent for this
stage of the data analysis.

The K-band sidelobe and W-band pedestal corrections are
the only beam-related effects that are added in “by hand” and
not treated in the formalism. These effects are significant for
real space analyses and are currently negligible for the  −space
CMB analyses.
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FIG. 5.— The transfer functions and their statistical and systematic uncertainty. The y axis of each panel shows the fractional uncertainty. The green curve is
the statistical uncertainty in the Hermite-based transfer function. The orange curve corresponds to twice the statistical uncertainty (it is mostly hidden by the black
curve). The red curve is the fractional difference between the bl computed from the spherical harmonic decomposition of the time stream and the Hermite fit. The
blue line is the fractional difference between the bl derived from the Juipter maps, after dividing by the 2 � 4 � pixelization window function, and the Hermite-based
transfer function. The black curve is the adopted 1 � uncertainty used in all analyses. It corresponds to the absolute value of the maximum deviation from zero
of the red, blue, and orange curves. The uncertainties on the window function, wl , are twice these, but average down when multiple channels are combined. The
uncertainty at l = 1 is small because we calibrate on the CMB dipole. The uncertainty in � B is manifest at high l.

Jupiter is mapped approximately twice per year. With more
data and improved modeling, our knowledge of the beams and
window functions will improve over the length of the mission.

The Jupiter maps and window functions are available on-line
through the LAMBDA web site at http://lambda.gsfc.nasa.gov/.

We thank Mike Nolta for useful discussions throughout the
preparation of this paper. Consultations with YRS Associates
(rahmat@ucla.edu) and their DADRA code have played a central
role in the development and assessment of the MAP optics. Ken
Hersey led the beam mapping effort at NASA/GSFC in addition
to working on the beam predictions. Our ability to test the beam
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model is rooted in his work. Cliff Jackson at NASA/GSFC
guided the WMAP thermal reflector system through all phases
of developement. The success of the WMAP optical system is
largely the result of his tremendous efforts. We are also grateful
for the dedicated work of many engineers and technicians who
made WMAP a reality.

6. APPENDIX A

The covariance matrix of the normalized beam is given by

� b
ll � = mh�

i � j=0

�
bl�
a2i

Caa �
i j

�
bl ��
a2 j

(18)

where

bl =
Bl

B0
=

� k a2kBlk� k a2kB0k
(19)

and �
bl�
a2i

=
Bil� k a2kB0k

−
� k a2kBlk

( � k a2kB0k)2
B0i � (20)

With the real space beam normalized to unity at � = 0,� k a2kB0k = � S. After plugging equation 18 into equation 20
there are four terms similar in form to� k a2kBlk

( � k a2kB0k)2
B0iC

aa �
i j

� j a2kBl � k
( � k a2kB0 � k)2

B0 � j =
blbl � �

00

( � S)2
� (21)

After working through the the other terms, we find equation 16.
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